

Markscheme

May 2016

Chemistry

Standard level

Paper 3

-2-

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Chemistry SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer **ALL** questions in Section A **[15 marks]** and all questions from **ONE** option in Section B **[20 marks]**. Maximum total = **[35 marks]**.

- 1. Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- 3. Each marking point in the "Answers" column is shown by means of a tick (✓) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- 10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.

- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.
- 14. Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- 16. If a question asks for an equation for a reaction, a balanced symbol equation is usually expected. Do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Section A

Question		on	Answers	Notes	Total	
1.	а		Ozone: yes because it absorbs IR/is IR active ✓ Oxygen: no because it does not absorb IR/is IR inactive ✓	Award [1 max] for stating "ozone/O ₃ is a greenhouse gas but oxygen/O ₂ is not". Award [1 max] for stating "ozone/O ₃ absorbs IR/is IR active but oxygen/O ₂ does not/is IR inactive". Accept "oxygen/O ₂ is not a greenhouse gas because it absorbs UV".	2	
1.	b	i	Any value or range within the range: 1300–1500 «km mol ⁻¹ » ✓	(It is in fact 1403 «km mol ⁻¹ » using the same measurement technique as that used to get the data in the table).	1	

C	Questi	ion	Answers	Notes	Total
1.	b	ii	CCl₄ is symmetrical/dipoles of C–Cl bonds cancel out OR C–F bond more polar «than C–Cl bond» ✓	Accept suitable diagrams with dipoles represented as vectors illustrating M1 and/or M2.	
				Accept "fluorine/F more electronegative «than chlorine/Cl»" for M1.	2
			«vector» sum of bond polarities in CCl₃F non-zero/greater OR dipoles of «three» C–Cl bonds do not cancel the dipole of the C–F bond ✓	Accept converse statements throughout. Accept "dipoles will not cancel out in CCl ₃ F" for M2.	
1.	b	iii	GWP increases as IR intensity increases ✓	Accept "GWP proportional to IR intensity". Accept "there is a positive correlation/ relationship". Accept converse statement.	1
1.	b	iv	no relationship <i>AND</i> CO₂ and CCl₄/CF₄ are non-polar/have zero dipole moment «but» have very different integrated IR intensities <i>OR</i> no relationship <i>AND</i> CCl₂F₂ and CClF₃ have «almost» the same dipole moment but have very different integrated IR intensities <i>OR</i> no relationship <i>AND</i> sometimes there is a positive relationship between the two «variables» and sometimes there is a negative/no relationship between them <i>OR</i> no relationship <i>AND</i> as F atoms are «gradually» added to CCl₄, integrated IR intensity always increases while dipole moment increases and then decreases ✓	Accept a plot or sketch with a comment that "changes along x-axis produce random changes along y-axis". Accept "yes there is a relationship, as there is still a weak overall «statistical» positive correlation". Accept "dipole" for "dipole moment".	1

Question		on	Answers	Notes	Total
1. b	b	v	«data from table such as integrated IR and GWP indicate that they» contribute significantly to global warming/enhanced greenhouse effect ✓ cause ozone depletion <i>OR</i> chlorine/Cl released when exposed to ultra-violet/UV «radiation» ✓	Do not just accept "contributes to global warming" without an indication that the effect is large. Do not accept just "contributes significantly to climate change". Award [1 max] for "persistent in atmosphere". Accept a consequence of global warming for M2.	2

2.	а	Key Procedural Steps: use volumetric flask ✓ mix the solution ✓ fill up to line/mark/«bottom of» meniscus/1 dm³ «with deionized/distilled water» ✓	Two marks may be awarded from two different categories or from within one category.	
		Key Technique Aspects: use balance that reads to two decimal places/use analytical balance/use balance of high precision ✓ mix pellets in beaker with deionized/distilled water «and stir with glass rod to dissolve» ✓ use a funnel «and glass-rod» to avoid loss of solution ✓ need to rinse «the beaker, funnel and glass rod» and transfer washings to the «volumetric» flask ✓	Do not accept "use of a funnel to transfer the solid".	2 max
		Safety Precautions: NaOH corrosive/reacts with water exothermically ✓ keep NaOH in dessicator ✓	Do not accept "keep volumetric flask in cold	
		let the solution cool ✓	water/ice".	

(Question		Answers	Notes	Total
2.	b	i	i blue to green/yellow ✓		1
2.	b	ii	equivalence point has been exceeded OR greater volume of/too much acid has been added ✓ «calculated» concentration increased ✓	Accept "end-point" for "equivalence point".	2
2.	С		colour difficult to detect OR using different HCl standards OR no significant figures used in subsequent calculation OR incorrect method of calculation ✓	Accept any valid hypothesis. Do not accept any mistakes associated with techniques (based on stem of question) eg. parallax error, not rinsing glassware, etc. Do not accept "HCl was not standardized". Accept "reaction of NaOH with CO ₂ «from air»". Accept "NaOH hygroscopic/absorbs moisture/H ₂ O «from the air/atmosphere»". Accept "impurities in NaOH". Accept "temperature changes during experiment". Ignore a general reference to random errors.	1

Section B

Option A — Materials

C	Question	Answers	Notes	Total
3.	а	$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g) \checkmark$		1
3.	b	Fe ₂ O ₃ : paramagnetic AND unpaired electrons present «so magnetic moments do not cancel out» ✓ Al ₂ O ₃ : diamagnetic AND no unpaired electrons/all electrons are paired «so magnetic moments cancel out» ✓	Award [1 max] for "Fe ₂ O ₃ paramagnetic AND Al ₂ O ₃ diamagnetic". Award [1 max] for "Fe ₂ O ₃ unpaired electrons present AND Al ₂ O ₃ no unpaired electrons/all electrons are paired". Award [1 max] for "Magnetic moments do not cancel out in Fe ₂ O ₃ but do in Al ₂ O ₃ ". Unpaired and paired electrons may also be conveyed by orbital diagrams for the respective ions.	2
3.	С	$n(e) = \frac{2.00 \times 10^{6}}{96500} / 20.7 \text{ «mol»}$ OR $n(Al) = \frac{1}{3}n(e) / 6.91 \text{ «mol»} \checkmark$ $m(Al) = \text{«6.91} \times 26.98 = \text{»186 «g»} \checkmark$	Award [2] for correct final answer for any value within the range 186–189 «g».	2

C	Question	Answers	Notes	Total
4.	а	possible toxicity «of small airborne particles» OR unknown health effects OR small particle size «and large surface area» may increase reaction rate to dangerous levels OR immune system/allergy concerns OR uncertain impact on environment ✓	Accept specific health effect (eg. may cause cancer/effect on respiratory system, etc).	1
4.	b	pores/cavities/channels/holes/cage-like structures «in zeolites» have specific shape/size ✓ only reactants «with appropriate size/geometry» fit inside/go through/are activated/can react ✓		2
4.	С	Catalyst: iron/Fe OR iron«0» «penta» carbonyl/Fe (CO) ₅ ✓ Conditions: high temperature/any value or range within the range 900–1600 °C AND high pressure/any value or range within the range 10–100 atm ✓	Accept "cobalt-molybdenum/Co-Mo/CoMo". Accept high pressures expressed in kPa/Pa.	2

C	uestion	Answers	Notes	Total
5.		ceramics have «giant» ionic/covalent/ionic <i>AND</i> covalent structures ✓	Accept [1 max] for "ionic/covalent/ionic and covalent bonds in ceramics AND metallic bonds in metals".	2
		metals contain lattice of positive ions/cations in sea of delocalized electrons ✓	Accept suitable diagram for M2.	

6.	а	alters the temperature range of the liquid-crystal state OR alters sensitivity «of the liquid crystal» to electric field«s» OR prevents liquid crystal activity ✓		1
6.	b	«CN group makes» molecule polar ✓	Accept "CN is polar".	
		alignment/orientation of molecules can be controlled by electric field <i>OR</i> allows molecules to align in an electric field/when a voltage is applied ✓		2

	Question		Answers	Notes	Total
7.	а		Cl. H Cl. H Cl. H Cl. H H H H H H H H correct structure with random orientation of Cl atoms	Accept 2-dimensional diagrams. Accept any random arrangement of Cl atoms providing the monomer units originate from chloroethene and Cl atoms are on alternate carbons. Continuation bonds are necessary for the mark.	1
7.	b	i	«plasticizer molecules» fit between chains OR «plasticizer molecules» prevent chains from forming crystalline regions OR «plasticizer molecules» keeps strands/chains/molecules separated OR «plasticizer molecules» increase space/volume between chains ✓ weakens intermolecular/dipole-dipole/London/dispersion/instantaneous induced dipole-induced dipole/van der Waals/vdW forces ✓	Do not accept "«plasticizer molecules» lower density".	2
7.	b	ii	ester/phthalate/citrate ✓	Accept other general or specific names of plasticizers.	1
7.	С		does not degrade/biodegrade/break down « easily » ✓ occupies more space in landfills ✓ incineration produces dioxins/hydrochloric acid/HCl « which can contribute to acid rain » ✓	Accept "plasticizer added to PVC can be a health hazard". Accept "combustion" for "incineration". Do not accept simply "toxic compounds" for M3.	1 max

Option B — Biochemistry

Quest	tion	Answers	Notes	Total
8. a		General hazards: acne OR weight gain OR liver/kidney damage OR stunted growth OR disruption of puberty OR increased aggressiveness OR increased risk of heart disease/atherosclerosis/heart attacks/strokes ✓	General hazards: Accept heart problems.	
		Male hazards: feminization/breast «tissue» development OR shrinking of the testes/testicles OR reduction in sperm production OR impotence ✓	Male hazards: Accept baldness.	3
		Female hazards: decreased breast development OR masculinisation OR infertility/abnormal menstrual cycles OR birth defects/altered fetus development ✓		

	Question		Answers	Notes	Total
8.	b	i	alkenyl/ethanylylidene ✓		1
8.	b	ii	four-ring «steroidal» backbone OR fused ring structure OR three 6-membered rings AND a 5-membered ring ✓	Award [1] for a sketch of the steroidal backbone.	1
8.	С		medical uses of steroids «under physician supervision» OR detection of banned substances can be improved ✓	Accept any specific medical use. Accept answers such as "their effects «either positive or negative» are better understood".	1

9.	а		pH 1.0	pH 6.0	pH 11.0	Charges must be shown on the correct atoms	
			H H H H N⊕ H C H ✓	H H H H C H H O O	H H H H C H	in each structure for mark. Penalize repeated mistakes once. Although question asks specifically for structures, accept condensed structural formulas, but charges must be given.	3
9.	b	i	+ • • • • Glu Leu L	— ys ✓✓		Award [2] for correct order. Award [1 max] for Leu in centre if order is incorrect.	2

Question		on	Answers	Notes	Total
9.	b	ii	6 ✓	Accept 27.	1

10.	а	$C_6H_{12}O_6(aq) + 6O_2(aq) \rightarrow 6CO_2(aq) + 6H_2O(l) \checkmark$	Accept equations for anaerobic respiration, such as $C_6H_{12}O_6$ (aq) $\rightarrow 2C_3H_6O_3$ (aq). Ignore ATP if added as a product.	1
10.	b	$n(C_6H_{12}O_6) \left\langle = \frac{15.0}{180.18} \right\rangle = 0.0833 \text{ «mol» } \checkmark$ «energy = 0.0833 × 2803 =» 233 «kJ» \checkmark	Award [2] for correct final answer. Accept –233 «kJ».	2

C	uestion	Answers	Notes	Total
10.	С	Two advantages: renewable resource ✓ broken down/digested by bacteria or other organisms within a relatively short time/quickly ✓ reduce «volume of» plastic waste/landfill ✓ reduce use of petrochemicals OR reduce use of fossil fuels as hydrocarbon source ✓ degrade into non-toxic products ✓ Two disadvantages: require use of land «for crop production» ✓ increased use of fertilizers/pesticides «leading to pollution» OR eutrophication ✓ might break down before end of use ✓ release of methane/CH₄/greenhouse gas «during degradation» ✓	Any two advantages for [2 max]. M2: reference must be made to time. Do not accept "biodegradable" (since stated in question). Ignore any mention of cost. Any two disadvantages for [2 max]. Ignore any mention of cost.	4 max
10.	d	Weaction rate typical curve as shown in example above ✓	Accept any curve with a single maximum (not just bell-shaped). Ignore features such as pH values on a pH scale or a pH value at maximum (if given). Do not penalize if curve does not touch the x-axis.	1

Option C — Energy

C	Questi	on	Answers	Notes	Total
11.	а	i	2,2-dimethylbutane OR 2,3-dimethylbutane OR 3-methylpentane OR 2-methylpentane OR cyclohexane OR methylcyclopentane OR benzene ✓	Accept name or structural formula. Accept any mono or poly-substituted cycloalkane with a total of six carbon atoms.	1
11.	а	ii	increased branching (for acyclic hydrocarbons)/aromatic/aromaticity (for benzene)/cyclic hydrocarbon OR tertiary radicals are more stable OR higher octane rating ✓	Response in M1 must be consistent with molecule chosen in a (i).	1
11.	b	i	$\frac{5470}{114.26}$ = » 47.9 « kJ g ⁻¹ » ✓		1

Qι	uesti	on	Answers	Notes	
11.	b	ii	Advantage: ethanol does not produce particulates/has less incomplete	Accept any valid advantage and disadvantage.	
			combustion/CO/HCs/VOCs/is less polluting	Ignore any mention of cost.	
			OR		
			ethanol has high octane rating OR	Ignore any mention of NO _x .	
			ethanol is renewable		
			OR		
			less environmental risks associated with spills for ethanol <i>OR</i>		
			less carbon dioxide/CO ₂ produced if renewable energy source		
			used		
			OR		
			economic advantages for countries that cannot produce crude oil ✓		
			Disadvantage:		
			reduces efficiency/lowers specific energy/lowers energy density		2
			OR		
			ethanol is more volatile/evaporates easily «than octane or its isomers»		
			OR		
			land that could be used for food production used to produce crops for ethanol		
			OR		
			biodiversity can be affected/loss of habitats «due to energy crop plantations»		
			OR	Accept "if the fuel blend consists of nearly pure ethanol,	
			phosphorus/nitrogen used in production has negative environmental effects	engine is difficult to start in cold weather".	
			OR	Accept for disadvantage any engine-related problem	
			modification of current engines «may be required» if ethanol used ✓	affected by ethanol use (eg. effect on fuel pumps, incorrect fuel quantity indicators, older cars may not be suitable for ethanol use, etc.).	

Question		Answers	Notes	Total
11.	С	$2C(s) + 2H2O(g) \rightarrow CH4(g) + CO2(g)$ OR $3C(s) + 2H2O(g) \rightarrow CH4(g) + 2CO(g) \checkmark$	Accept a two-step process.	1

12.	а	Reagent: methanol/CH₃OH OR ethanol/C₂H₅OH ✓	Do not accept just "alcohol".	
		Catalyst: strong acid OR strong base ✓	Accept any strong acid such as sul H_2SO_4 . Accept any strong base such as so hydroxide/NaOH.	
12.	b	H_2C O C R O H_2C O C R O H C O C R' C	CH ₃ OCOR + CH ₃ OCOR' + CH ₃ OCOR" + CH ₃ OCOR" + CH ₃ OCOR" + H ₂ C(OH)-CH(OH)-CH ₂ OH	l as oducts.

Questi	n Answers	Notes	Total
12. c	different solutions/statistical data can be compared/combined OR best ideas can be shared to arrive at global/local solutions OR acceleration of research OR discoveries become available to everyone OR improved confidence in validity of results «if multiple scientists/research groups are involved» OR money/effort/time is not wasted duplicating work others have already done ✓	Do not accept scientists simply working together to share ideas – look for a little more detail. Accept other valid suggestions.	1

13.	а		${}^{232}_{90}\text{Th} + {}^{12}_{6}\text{C} \rightarrow {}^{240}_{96}\text{Cm} + 4{}^{1}_{0}\text{n} \checkmark$	Accept 232 Th + 12 C \rightarrow 240 Cm + 4n. Accept "4n" for "4 $^{1}_{0}$ n" in any equation.	1
13.	b	i	«3 half-lives, so» 2.11 × 10 ⁹ «years» ✓	Accept any value within range $2.11-2.13 \times 10^9$ «years».	1
13.	b	ii	products are radioactive/undergo «nuclear» decay OR products have unstable nuclei OR products may be used to make «nuclear» weapons ✓		1

Question	Answers Notes		Total	
13. c	both processes increase «nuclear» binding energy per nucleon <i>OR</i> both processes bring product closer to the maximum binding energy per nucleon «of iron-56» <i>OR</i> both processes result in more stable nuclei ✓	Mark can be awarded to an annotated sketch of binding energy per nucleon vs A. Fission Iron	1	

14.		Accept " $H_2CO_3(aq)$ " for " $CO_2(aq) + H_2O(l)$ ".	
	OR $CO_2(g) \rightleftharpoons CO_2(aq) AND CO_2(aq) + H_2O(l) \rightleftharpoons H^+(aq)$) + HCO₃¯(aq) ✓	
	«increasing [CO ₂]» shifts equilibrium/reaction to right	3	
	pH decreases ✓		

15.	bond length/C=O changes	Accept appropriate diagrams.	
	OR		
	«asymmetric» stretching «of bonds»		
	OR		
	bond angle/OCO changes/bends ✓		2
	polarity/dipole «moment» changes		
	OR		
	a dipole «moment» is created «when the molecule absorbs IR» ✓		

Option D — Medicinal chemistry

estion	Answers	Notes	Total
a	ring is «sterically» strained OR angles of 90° instead of 109.5/109/120° angles OR angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angle ✓ ring breaks up/opens/reacts «easily»		3
	OR amide/amido group «in ring» is «highly» reactive ✓ binds to/reacts with/interferes with/inactivates transpeptidase/enzyme responsible for bacterial cell wall formation/cross-linking ✓	Do not accept "cell membrane" for "cell wall". Accept "bonds to" for "binds to" in M3.	
b	Any two for [1 max] from: leads to «bacterial» resistance «of antiobiotics» OR makes antibiotics less effective OR increased side effects due to larger dosages ✓ proportion of resistant bacteria increases ✓ destroys useful/beneficial bacteria OR destroyed bacteria replaced by more harmful bacteria ✓ resistant bacteria pass on their resistance/mutation to next generation ✓	Accept "superbugs such as MRSA develop" but superbug must be identified.	1 max
•		ring is «sterically» strained OR angles of 90° instead of 109.5/109/120° angles OR angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angle ✓ ring breaks up/opens/reacts «easily» OR amide/amido group «in ring» is «highly» reactive ✓ binds to/reacts with/interferes with/inactivates transpeptidase/enzyme responsible for bacterial cell wall formation/cross-linking ✓ Any two for [1 max] from: leads to «bacterial» resistance «of antiobiotics» OR makes antibiotics less effective OR increased side effects due to larger dosages ✓ proportion of resistant bacteria increases ✓ destroys useful/beneficial bacteria OR	ring is «sterically» strained OR angles of 90° instead of 109.5/109/120° tetrahedral/trigonal planar/triangular planar angles smaller than 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angles of 90° instead of 109.5/109/120°/tetrahedral/trigonal planar/triangular planar angle of 109.5/109/120°/tetrahedral/trigonal planar/t

C	Question			Answers	Notes	Total
17.	а	Reagent (CH ₃ CO) ₂ O OR CH ₃ COCl OR CH ₃ COOH ✓	By-product CH ₃ COOH OR HCl OR H ₂ O ✓		Accept names or structural formulas for reagent and by-product. Accept IUPAC or alternative names of compounds e.g. acetic acid. Award M2 only if the by-product corresponds to the reagent.	2
17.	b	Present in morphine but not in diamorphine: «has OH and absorbance at» 3200–3600 «cm ⁻¹ » ✓ Present in diamorphine but not in morphine: «has C=O and absorbance at» 1700–1750 «cm ⁻¹ » ✓				2
17.	С	morphine has «two» hydroxyl «groups» <i>AND</i> diamorphine/heroin has «two» ester/ethanoate/acetate «groups» ✓ morphine is more polar than diamorphine/heroin ✓ diamorphine/heroin crosses the blood-brain barrier «easily» ✓		Accept converse argument throughout. Accept "alcohol/hydroxy" for "hydroxyl" but not "hydroxide".	3 max	
		OR	ore> soluble in bl	·	Do not accept "diamorphine/heroin is non-polar" for M2.	

18.	а	$\begin{array}{c} \operatorname{Mg}\left(\operatorname{OH}\right)_{2}(s) + 2\operatorname{HCl}\left(\operatorname{aq}\right) \to 2\operatorname{H}_{2}\operatorname{O}\left(\mathfrak{l}\right) + \operatorname{MgCl}_{2}\left(\operatorname{aq}\right) \\ \boldsymbol{OR} \\ \operatorname{Mg}\left(\operatorname{OH}\right)_{2}(s) + 2\operatorname{H}^{+}\left(\operatorname{aq}\right) \to \operatorname{Mg}^{2+}\left(\operatorname{aq}\right) + 2\operatorname{H}_{2}\operatorname{O}\left(\mathfrak{l}\right) \checkmark \end{array}$		1
18.	b	$\frac{1.00}{58.33} = 0.0171 \text{ «mol Mg (OH)}_2 \text{»} \checkmark$	Award [2] for 1.25 or 1.26 «g».	2
		«0.0171 × 2 × 36.46 =» 1.25 «g» ✓		

Question	Answers	Notes	Total
18. c	Award [1 max] for any similarity: both compounds relieve symptoms of acid reflux/heartburn/indigestion OR both increase the stomach pH ✓ both cause diarrhoea ✓ Award [2 max] for any two differences: omeprazole stops the production of acid/is a proton-pump inhibitor AND magnesium hydroxide neutralizes the «excess» acid that is present ✓ omeprazole takes longer «than magnesium hydroxide» to provide relief ✓ omeprazole is used to treat ulcers while magnesium hydroxide is not ✓ omeprazole can prevent long term damage from overproduction of acid AND magnesium hydroxide does not OR omeprazole has a long term effect AND magnesium hydroxide has a short-term effect «only» ✓ magnesium hydroxide affects ionic balance in the body AND omeprazole does not ✓	Award [1 max] if two or three correct points are given about one of the compounds without addressing the other compound.	3 max

Question	Answers	Notes	Total
19. a	Treatment Storage «in shielded container» until isotope has decayed/for a period of time withen dispose as non-radioactive waste» ✓ withen dispos	Award [1] for example AND corresponding treatment. Award [1 max] for the two examples.	2
19. b	risk vs benefit «patient and environment» OR providing adequate information to patients about risks OR security concerns if nuclear radioactive material ended up with terrorists OR cultural resistance/superstition/lack of education OR «potential» exposure of health workers «to radioactivity» OR proper training «in radioactive hazards» not always given to workers OR proper disposal of radioactive materials ✓	Accept other valid ethical implications (note that risk of cancer to the patient is not an ethical issue, while risk of cancer to the health worker is). Do not accept "security concerns" alone – there must be some reference to an ethical implication.	1